Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.351
Filtrar
1.
Appl Radiat Isot ; 208: 111303, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38531243

RESUMO

Boron neutron capture therapy (BNCT) is an effective binary radiation therapy that depends on nuclear capture reactions. In recent years, BNCT can be performed without a reactor owing to the development of accelerator-based neutron sources. A new BNCT irradiation facility is proposed, which is based on a 15 mA 2.5 MeV proton accelerator with a 100 µm thickness natural lithium target as a neutron converter. A great quantity of studies has shown that neutron beams with different spectra have unique therapeutic effects on tumors. An appropriate neutron beam for BNCT is obtained by Beam Shaping Assembly (BSA) and the moderator plays a main role in determining the BSA outlet beam spectrum. To figure out the dose distribution in phantom with various kinds of neutron spectrum modes during BNCT, a series of cases are calculated by MCNPX code. The results give a database for treatment of brain tumors with BNCT by using different moderators.


Assuntos
Terapia por Captura de Nêutron de Boro , Neoplasias Encefálicas , Humanos , Terapia por Captura de Nêutron de Boro/métodos , Neoplasias Encefálicas/radioterapia , Lítio , Dosagem Radioterapêutica , Prótons , Nêutrons , Método de Monte Carlo
2.
Appl Radiat Isot ; 207: 111249, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38428203

RESUMO

The 71Ga(n,γ)72Ga reaction-based epithermal neutron flux detectors are novel instruments developed to measure the epithermal neutron flux of boron neutron capture therapy (BNCT) treatment beams. In this study, a spherical epithermal neutron flux detector using 71Ga(n,γ)72Ga reaction was prototyped. The performance of the detector was experimentally evaluated at an accelerator-based BNCT (AB-BNCT) device developed by Lanzhou University, China. Based on the experimental results and related analysis, we demonstrated that the detector is a reliable tool for the quality assurance of BNCT treatment beams.


Assuntos
Terapia por Captura de Nêutron de Boro , Humanos , Terapia por Captura de Nêutron de Boro/métodos , Nêutrons , Dosagem Radioterapêutica , Raios gama , Método de Monte Carlo
3.
Adv Colloid Interface Sci ; 325: 103120, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38428362

RESUMO

The last couple of decades have seen an explosion of novel colloidal drug delivery systems, which have been demonstrated to increase drug efficacy, reduce side-effects, and provide various other advantages for both small-molecule and biomacromolecular drugs. The interactions of delivery systems with biomembranes are increasingly recognized to play a key role for efficient eradication of pathogens and cancer cells, as well as for intracellular delivery of protein and nucleic acid drugs. In parallel, there has been a broadening of methodologies for investigating such systems. For example, advanced microscopy, mass-spectroscopic "omic"-techniques, as well as small-angle X-ray and neutron scattering techniques, which only a few years ago were largely restricted to rather specialized areas within basic research, are currently seeing increased interest from researchers within wide application fields. In the present discussion, focus is placed on the use of neutron reflectometry to investigate membrane interactions of colloidal drug delivery systems. Although the technique is still less extensively employed for investigations of drug delivery systems than, e.g., X-ray scattering, such studies may provide key mechanistic information regarding membrane binding, re-modelling, translocation, and permeation, of key importance for efficacy and toxicity of antimicrobial, cancer, and other therapeutics. In the following, examples of this are discussed and gaps/opportunities in the research field identified.


Assuntos
Sistemas de Liberação de Medicamentos , Proteínas , Preparações Farmacêuticas , Nêutrons
4.
Proc Jpn Acad Ser B Phys Biol Sci ; 100(3): 190-233, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38462501

RESUMO

The current understanding of the mechanism of core-collapse supernovae (CCSNe), one of the most energetic events in the universe associated with the death of massive stars and the main formation channel of compact objects such as neutron stars and black holes, is reviewed for broad readers from different disciplines of science who may not be familiar with the object. Therefore, we emphasize the physical aspects than the results of individual model simulations, although large-scale high-fidelity simulations have played the most important roles in the progress we have witnessed in the past few decades. It is now believed that neutrinos are the most important agent in producing the commonest type of CCSNe. The so-called neutrino-heating mechanism will be the focus of this review and its crucial ingredients in micro- and macrophysics and in numerics will be explained one by one. We will also try to elucidate the remaining issues.


Assuntos
Nêutrons , Astros Celestes
5.
Stud Hist Philos Sci ; 104: 119-129, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38513468

RESUMO

In this paper I discuss the first "multi-messenger" observations of a binary neutron star merger and kilonova. These observations, touted as "revolutionary," included both gravitational-wave and electromagnetic observations of a single source. I draw on analogies between astrophysics and historical sciences (e.g., paleontology) to explain the significance of this for (gravitational-wave) astrophysics. In particular, I argue that having independent lines of evidence about a target system enables the use of argumentative strategies-the "Sherlock Holmes" method and consilience-that help overcome the key challenges astrophysics faces as an observational and historical science.


Assuntos
Gravitação , Nêutrons , Paleontologia
6.
Front Public Health ; 12: 1335097, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38299079

RESUMO

Even today when nearly 80 years have passed after the atomic bomb (A-bomb) was dropped, there are still debates about the exact doses received by the A-bomb survivors. While initial airborne kerma radiation (or energy spectrum of emitted radiation) can be measured with sufficient accuracy to assess the radiation dose to A-bomb survivors, it is not easy to accurately assess the neutron dose including appropriate weighting of neutron absorbed dose. Particularly, possible post-explosion exposure due to the radioactive particles generated through neutron activation have been almost neglected so far, mainly because of a large uncertainty associated to the behavior of those particles. However, it has been supposed that contribution of such non-initial radiation exposure from the neutron-induced radioactive particles could be significant, according to the findings that the stable chromosomal aberration rates which indicate average whole-body radiation doses were found to be more than 30% higher for those exposed indoors than for those outdoors even at the same initial dose estimated for the Life Span Study. In this Mini Review article, the authors explain that such apparently controversial observations can be reasonably explained by assuming a higher production rate of neutron-induced radioactive particles in the indoor environment near the hypocenter.


Assuntos
Sobreviventes de Bombas Atômicas , Radiometria , Humanos , Explosões , Aberrações Cromossômicas , Nêutrons
7.
Radiat Environ Biophys ; 63(1): 143-164, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38310599

RESUMO

The materials which compose the ICRP Voxel phantoms used in the computation of conversion coefficients involve neutron interaction cross-sections that have resonances at specific energies. Depending on the energy bin structure used in the computations, these cross-section resonances may occur at energies that fall between energies at which dose coefficients are computed, thus their effects may not be completely accounted for in the reported coefficients. In the present study, a highly refined energy grid that closely follows the resonance structure in the phantom material cross-sections was identified and used to calculate dose coefficients. Both the equivalent organ/tissue doses for male and female voxel phantoms were computed as well as their summation to obtain the effective dose coefficients. The used refined energy grid tracks very closely the cross-sections in the vicinity of the resonances. The resulting refined energy grid coefficients are compared to coefficients for the coarser energy grid used in ICRP Publication 116. Additionally, reference spectra have been folded with both the fine and coarse sets of conversion coefficients. The resulting total effective doses for these reference spectra are used to assess the adequacy of the dose coefficients calculated on the original ICRP 116 energy grid. The dose coefficients were similarly computed for the local skin dose on the trunk of the body using the ICRU Report 95 phantom. The overall impact of the resonances on the organ/tissue equivalent dose, the effective dose, and the local skin dose are presented and discussed. In general, it was found that resonances can impact neutron dose coefficients, but in most cases the wide range of neutron energies encountered minimized this effect. The impact of resonances was further limited when computing effective dose due to organ/tissue summing and sex-averaging. For the neutron fields studied here, the impact was below 5%.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Nêutrons , Masculino , Feminino , Humanos , Doses de Radiação , Imagens de Fantasmas , Radiometria/métodos , Método de Monte Carlo
8.
Appl Radiat Isot ; 206: 111233, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38340532

RESUMO

Carbon ions have unique physical and biological properties that allow for precise targeting of tumors while minimizing damage to surrounding healthy tissues. The emitted neutrons dominate the radiation field in the treatment room and pose challenges for radiological shielding. Concrete is extensively utilized in the construction of radiotherapy facilities due to its good shielding characteristics, and it can be easily poured into the desired shapes and thickness. The difference in composition of concrete affects the characteristics of neutron attenuation and activation performance. Therefore, the purpose of this study is to clarify the shielding properties and activation performances of four types of concrete for carbon ion therapy facilities. The Monte Carlo method is used to analyze the neutron spectra from thick targets upon carbon ion bombardment. Furthermore, the deep attenuation efficiency of the secondary neutron in different compositions of concrete is discussed. The shielding design is developed to ensure compliance with the prescribed dose limit outside the shielding during operation. Finally, the induced radioactivity in concrete is estimated for both short-term and long-term operation. The produced radionuclides inventories and depth profiling are determined. This study reveals the shielding and radioactivity issue of carbon ion therapy facilities and is expected to aid in the design or construction of similar facilities.


Assuntos
Radioterapia com Íons Pesados , Nêutrons , Íons , Radioisótopos , Carbono , Método de Monte Carlo , Doses de Radiação
9.
Methods ; 223: 127-135, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38331125

RESUMO

Biological membranes are highly complex supramolecular assemblies, which play central roles in biology. However, their complexity makes them challenging to study their nanoscale structures. To overcome this challenge, model membranes assembled using reduced sets of membrane-associated biomolecules have been found to be both excellent and tractable proxies for biological membranes. Due to their relative simplicity, they have been studied using a range of biophysical characterization techniques. In this review article, we will briefly detail the use of fluorescence and electron microscopies, and X-ray and neutron scattering techniques used over the past few decades to study the nanostructure of biological membranes.


Assuntos
Microscopia , Nêutrons , Biofísica , Membrana Celular , Lipídeos
10.
Int J Mol Sci ; 25(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38338829

RESUMO

Molecular Dynamics simulations study material structure and dynamics at the atomic level. X-ray and neutron scattering experiments probe exactly the same time- and length scales as the simulations. In order to benchmark simulations against measured scattering data, a program is required that computes scattering patterns from simulations with good single-core performance and support for parallelization. In this work, the existing program Sassena is used as a potent solution to this requirement for a range of scattering methods, covering pico- to nanosecond dynamics, as well as the structure from some Ångströms to hundreds of nanometers. In the case of nanometer-level structures, the finite size of the simulation box, which is referred to as the finite size effect, has to be factored into the computations for which a method is described and implemented into Sassena. Additionally, the single-core and parallelization performance of Sassena is investigated, and several improvements are introduced.


Assuntos
Benchmarking , Simulação de Dinâmica Molecular , Raios X , Radiografia , Nêutrons , Difração de Nêutrons/métodos , Espalhamento a Baixo Ângulo , Difração de Raios X
11.
Health Phys ; 126(4): 252-258, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38381973

RESUMO

ABSTRACT: Proton therapy is an advanced method for treating cancerous tumors, and its adoption has expanded significantly in recent years. The production of high-energy protons, however, may result in the creation of secondary neutrons and gamma rays. Hence, ensuring radiation safety at proton therapy centers is crucial, with shielding playing a vital role. This study aimed to evaluate the efficacy of the shielding implemented at the Provision Proton Therapy center in Knoxville, TN, USA. For this purpose, we measured and compared gamma ray radiation levels within the treatment room and the facility's roof. These measurements were conducted using a NaI(Tl) scintillator detector. The PHITS Monte Carlo code was used to deconvolute the incident spectrum using detector response functions. Findings reveal that the facility's shielding effectively protects the general public from gamma ray radiation, with the effective dose within the treatment room being minimal and dose on the roof was comparable to background radiation levels. However, it is important to note that this study did not address the issue of secondary neutron radiation field, which is an important aspect of dose and radiation safety in proton therapy centers.


Assuntos
Terapia com Prótons , Terapia com Prótons/métodos , Método de Monte Carlo , Nêutrons
12.
Biochemistry ; 63(3): 339-347, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38232298

RESUMO

Metalloproteins play fundamental roles in organisms and are utilized as starting points for the directed evolution of artificial enzymes. Knowing the strategies of metalloproteins, by which they exquisitely tune their activities, will not only lead to an understanding of biochemical phenomena but also contribute to various applications. The blue copper protein (BCP) has been a renowned model system to understand the biology, chemistry, and physics of metalloproteins. Pseudoazurin (Paz), a blue copper protein, mediates electron transfer in the bacterial anaerobic respiratory chain. Its redox potential is finely tuned by hydrogen (H) bond networks; however, difficulty in visualizing H atom positions in the protein hinders the detailed understanding of the protein's structure-function relationship. We here used neutron and sub-ångström resolution X-ray crystallography to directly observe H atoms in Paz. The 0.86-Å-resolution X-ray structure shows that the peptide bond between Pro80 and the His81 Cu ligand deviates from the ideal planar structure. The 1.9-Å-resolution neutron structure confirms a long-overlooked H bond formed by the amide of His81 and the S atom of another Cu ligand Cys78. Quantum mechanics/molecular mechanics calculations show that this H bond increases the redox potential of the Cu site and explains the experimental results well. Our study demonstrates the potential of neutron and sub-ångström resolution X-ray crystallography to understand the chemistry of metalloproteins at atomic and quantum levels.


Assuntos
Cobre , Metaloproteínas , Cobre/metabolismo , Cristalografia por Raios X , Ligação de Hidrogênio , Ligantes , Modelos Moleculares , Metaloproteínas/metabolismo , Nêutrons
13.
J Radiol Prot ; 44(1)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38232405

RESUMO

In standard monoenergetic ISO neutron fields, the neutron yield of neutron-producing reactions was measured in combination with the prompt photon yield, including photon energies up to 10 MeV, for the purpose of comparing the two yields. Separating the photons produced by the target (direct photons) from those generated by secondary neutron reactions was achieved using the time-of-flight method. Photon and neutron ambient dose equivalent values were calculated from measured spectral energy distributions. Quasi monoenergetic neutron fields are needed to systematically test the response of measuring instruments to neutron radiation. For this reason, ISO has defined a number of reference neutron radiation fields covering a wide energy range up to 19 MeV. Because neutron detectors may also be affected by photon radiation, the photon fluence in the ISO neutron fields has to be known. This work focuses on quasi monoenergetic accelerator-produced neutron fields in the energy range of 24 keV to 19 MeV.


Assuntos
Nêutrons , Radiometria , Doses de Radiação , Radiometria/métodos , Raios gama , Fótons
14.
Phys Med Biol ; 69(4)2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38241727

RESUMO

Objective.For fast neutron therapy with mixed neutron and gamma radiation at the fission neutron therapy facility MEDAPP at the research reactor FRM II in Garching, no clinical dose calculation software was available in the past. Here, we present a customized solution for research purposes to overcome this lack of three-dimensional dose calculation.Approach.The applied dose calculation method is based on two sets of decomposed pencil beam kernels for neutron and gamma radiation. The decomposition was performed using measured output factors and simulated depth dose curves and beam profiles in water as reference medium. While measurements were performed by applying the two-chamber dosimetry method, simulated data was generated using the Monte Carlo code MCNP. For the calculation of neutron dose deposition on CT data, tissue-specific correction factors were generated for soft tissue, bone, and lung tissue for the MEDAPP neutron spectrum. The pencil beam calculations were evaluated with reference to Monte Carlo calculations regarding accuracy and time efficiency.Main results.In water, dose distributions calculated using the pencil beam approach reproduced the input from Monte Carlo simulations. For heterogeneous media, an assessment of the tissue-specific correction factors with reference to Monte Carlo simulations for different tissue configurations showed promising results. Especially for scenarios where no lung tissue is present, the dose calculation could be highly improved by the applied correction method.Significance.With the presented approach, time-efficient dose calculations on CT data and treatment plan evaluations for research purposes are now available for MEDAPP.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Tromboplastina , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Raios gama/uso terapêutico , Nêutrons , Radiometria/métodos , Água , Tomografia Computadorizada por Raios X , Método de Monte Carlo , Algoritmos , Imagens de Fantasmas
15.
Sci Rep ; 14(1): 418, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172585

RESUMO

Boron Neutron Capture Therapy (BNCT) is a radiotherapy technique based on the enrichment of tumour cells with suitable 10-boron concentration and on subsequent neutron irradiation. Low-energy neutron irradiation produces a localized deposition of radiation dose caused by boron neutron capture reactions. Boron is vehiculated into tumour cells via proper borated formulations, able to accumulate in the malignancy more than in normal tissues. The neutron capture releases two high-LET charged particles (i.e., an alpha particle and a lithium ion), losing their energy in a distance comparable to the average dimension of one cell. Thus BNCT is selective at the cell level and characterized by high biological effectiveness. As the radiation field is due to the interaction of neutrons with the components of biological tissues and with boron, the dosimetry requires a formalism to express the absorbed dose into photon-equivalent units. This work analyzes a clinical case of an adenoid cystic carcinoma treated with carbon-ion radiotherapy (CIRT), located close to optic nerve and deep-seated as a practical example of how to apply the formalism of BNCT photon isoeffective dose and how to evaluate the BNCT dose distribution against CIRT. The example allows presenting different dosimetrical and radiobiological quantities and drawing conclusions on the potential of BNCT stemming on the clinical result of the CIRT. The patient received CIRT with a dose constraint on the optic nerve, affecting the peripheral part of the Planning Target Volume (PTV). After the treatment, the tumour recurred in this low-dose region. BNCT was simulated for the primary tumour, with the goal to calculate the dose distribution in isoeffective units and a Tumour Control Probability (TCP) to be compared with the one of the original treatment. BNCT was then evaluated for the recurrence in the underdosed region which was not optimally covered by charged particles due to the proximity of the optic nerve. Finally, a combined treatment consisting in BNCT and carbon ion therapy was considered to show the consistency and the potential of the model. For the primary tumour, the photon isoeffective dose distribution due to BNCT was evaluated and the resulted TCP was higher than that obtained for the CIRT. The formalism produced values that are consistent with those of carbon-ion. For the recurrence, BNCT dosimetry produces a similar TCP than that of primary tumour. A combined treatment was finally simulated, showing a TCP comparable to the BNCT-alone with overall dosimetric advantage in the most peripheral parts of the treatment volume. Isoeffective dose formalism is a robust tool to analyze BNCT dosimetry and to compare it with the photon-equivalent dose calculated for carbon-ion treatment. This study introduces for the first time the possibility to combine the dosimetry obtained by two different treatment modalities, showing the potential of exploiting the cellular targeting of BNCT combined with the precision of charged particles in delivering an homogeneous dose distribution in deep-seated tumours.


Assuntos
Terapia por Captura de Nêutron de Boro , Neoplasias de Cabeça e Pescoço , Radioterapia com Íons Pesados , Humanos , Terapia por Captura de Nêutron de Boro/métodos , Boro , Carbono , Nêutrons
16.
Int J Radiat Biol ; 100(4): 609-618, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38190436

RESUMO

PURPOSE: The current study aimed to investigate boron carbide and boric acid nanoparticles (NPs) as absorbents for thermal neutrons and high-density polyethylene (HDPE) as a substrate and neutron moderator for fast neutrons. The goal was to assess the performance of boron carbide and boric acid NPs based on HDPE as a nanoshield of photoneutrons from medical linear accelerators. MATERIALS AND METHODS: This study was conducted in two parts of simulation and practice. The Monte Carlo (MC) simulation involved modeling and verification of the single-layer, double-layer, and combined nanoshields by selecting nanomaterials and substrates and, finally, calculating the macroscopic cross-sections. The practical part involved manufacturing nanoshields based on the simulation results and evaluating the manufactured nanocomposites via experimental measurements. RESULTS: MC simulation results with an uncertainty of less than 1% showed that for the monolayer samples, the best result belonged to boron carbide at a concentration of 10% and a macroscopic cross-section of 0.933 cm-1. At a concentration of 20%, the highest value among the double-layer samples was 0.936 cm-1 and for the combined samples, this value was 0.928 cm-1. Boron carbide single-layer nanocomposites at a 10% concentration, as well as the bilayer nanoshield of 10% boron carbide and 20% boric acid performed well; however, the best performance belonged to the nanoshield with a macroscopic cross-section of 0.960 and the combination containing 5% boron carbide and 10% boric acid. CONCLUSIONS: The research suggests that utilizing boron carbide and boric acid nanoshields in combination with HDPE holds promise as a viable approach to protecting from the photoneutrons. Further exploration of these nanocomposite shields and their practical applications is warranted, with the potential to yield significant advancements in radiation therapy safety and efficacy.


Assuntos
Ácidos Bóricos , Terapia por Captura de Nêutron de Boro , Nanopartículas , Polietileno , Boro , Compostos de Boro , Nêutrons , Aceleradores de Partículas , Método de Monte Carlo , Terapia por Captura de Nêutron de Boro/métodos
17.
ACS Appl Mater Interfaces ; 16(3): 3232-3242, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38221726

RESUMO

Accurate prediction of the relative biological effectiveness (RBE) of boron neutron capture therapy (BNCT) is challenging. The therapy is different from other radiotherapy; the dynamic distribution of boron-containing compounds in tumor cells affects the therapeutic outcome considerably and hampers accurate measurement of the neutron-absorbed dose. Herein, we used boron-containing metal-organic framework nanoparticles (BMOFs) with high boron content to target U87-MG cells and maintain the concentration of the 10B isotope in cells. The content of boron in the cells could maintain 90% (60 ppm) within 20 min compared with that at the beginning; therefore, the accurate RBE of BNCT can be acquired. The effects of BNCT upon cells after neutron irradiation were observed, and the neutron-absorbed dose was obtained by Monte Carlo simulations. The RBE of BMOFs was 6.78, which was 4.1-fold higher than that of a small-molecule boron-containing agent (boric acid). The energy spectrum of various particles was analyzed by Monte Carlo simulations, and the RBE was verified theoretically. Our results suggested that the use of nanoparticle-based boron carriers in BNCT may have many advantages and that maintaining a stable boron distribution within cells may significantly improve the efficiency of BNCT.


Assuntos
Terapia por Captura de Nêutron de Boro , Boro , Terapia por Captura de Nêutron de Boro/métodos , Eficiência Biológica Relativa , Nêutrons
18.
J Phys Chem B ; 128(2): 405-414, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38183282

RESUMO

Numerous studies have discussed the impact of cosolvents on the structure, dynamics, and stability of proteins in aqueous solutions. However, the dynamics of cosolvents in the protein-water-cosolvent ternary system is largely unexplored in experiments due to technical difficulty. Consequently, a comprehensive understanding of the interplay among proteins, water, and cosolvents is still lacking. Here, we employed selective deuteration and neutron scattering techniques to characterize the individual motions of each component in the protein/water/glycerol (GLY) mixture across various temperatures. The consistent dynamic onset temperatures and the correlation between the MSD of the protein and the viscosity of solvents revealed the mutual coupling effects among the three components. Furthermore, our experimental and simulation results showed that the hydrogen bond relaxation energy barrier in the ternary system is ∼43 kJ/mol, whereas in the protein-water binary system it is merely ∼35 kJ/mol. Therefore, we suggest that GLY can enhance hydrogen bond interactions in the ternary system through the mutual coupling effect, thereby serving as one of the protective mechanisms of protein preservation by GLY.


Assuntos
Glicerol , Água , Glicerol/química , Água/química , Solventes/química , Proteínas/química , Nêutrons
19.
Med Phys ; 51(1): 439-446, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37956252

RESUMO

BACKGROUND: Boron-containing compounds, such as 4-borono-phenylalanine (BPA) are used as drugs for cancer treatment in the framework of Boron Neutron Capture Therapy (BNCT). Neutron irradiation of boron-rich compounds delivered to cancer cells triggers nuclear reactions that destroy cancer cells. PURPOSE: We provide a modeling of the thermal neutron cross section of BPA, a drug used in Boron Neutron Capture Therapy (BNCT), to quantify the competing contributions of boron absorption against hydrogen scattering, for optimizing BNCT by minimizing the latter. METHODS: We perform the experimental determination of the total neutron scattering cross section of BPA at thermal and epithermal neutron energies using neutron transmission measurements. We isolate the contribution related to the incoherent scattering by hydrogen atoms as a function of the neutron energy by means of the Average Functional Group Approximation, and we calculate the probability for a neutron of being absorbed as a function of the neutron energy both for BPA and for its variants where either one or all four aromatic hydrogen atoms are substituted by 19 F, and both for the samples with natural occurrence or enriched concentration of 10 B. RESULTS: While referring to the already available literature for in vivo use of fluorinated BPA, we show that fluorine-rich variants of BPA increase the probability of neutrons being captured by the molecule. As the higher absorption efficiency of fluorinated BPA does not depend on whether the molecule is used in vivo or not, our results are promising for the higher efficiency of the boron neutron capture treatment. CONCLUSIONS: Our results suggest a new advantage using fluorinated compounds for BNCT, in their optimized interaction with neutrons, in addition to their already known capability to be used for monitoring and pharmacokinetics studies using 19 F-Nuclear Magnetic Resonance or in 18 F-Positron Emission Tomography.


Assuntos
Terapia por Captura de Nêutron de Boro , Boro , Terapia por Captura de Nêutron de Boro/métodos , Fenilalanina/farmacocinética , Fenilalanina/uso terapêutico , Tomografia Computadorizada por Raios X , Nêutrons , Compostos de Boro/uso terapêutico , Compostos de Boro/farmacocinética
20.
Phys Med Biol ; 69(1)2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37995363

RESUMO

Objective.To study the secondary neutrons generated by primary oxygen beams for cancer treatment and compare the results to those from primary protons, helium, and carbon ions. This information can provide useful insight into the positioning of neutron detectors in phantom for future experimental dose assessments.Approach.Mono-energetic oxygen beams and spread-out Bragg peaks were simulated using the Monte Carlo particle transport codesFLUktuierende KAskade, tool for particle simulation, and Monte Carlo N-Particle, with energies within the therapeutic range. The energy and angular distribution of the secondary neutrons were quantified.Main results.The secondary neutron spectra generated by primary oxygen beams present the same qualitative trend as for other primary ions. The energy distributions resemble continuous spectra with one peak in the thermal/epithermal region, and one other peak in the fast/relativistic region, with the most probable energy ranging from 94 up to 277 MeV and maximum energies exceeding 500 MeV. The angular distribution of the secondary neutrons is mainly downstream-directed for the fast/relativistic energies, whereas the thermal/epithermal neutrons present a more isotropic propagation. When comparing the four different primary ions, there is a significant increase in the most probable energy as well as the number of secondary neutrons per primary particle when increasing the mass of the primaries.Significance.Most previous studies have only presented results of secondary neutrons generated by primary proton beams. In this work, secondary neutrons generated by primary oxygen beams are presented, and the obtained energy and angular spectra are added as supplementary material. Furthermore, a comparison of the secondary neutron generation by the different primary ions is given, which can be used as the starting point for future studies on treatment plan comparison and secondary neutron dose optimisation. The distal penumbra after the maximum dose deposition appears to be a suitable location for in-phantom dose assessments.


Assuntos
Nêutrons , Terapia com Prótons , Terapia com Prótons/métodos , Prótons , Dosagem Radioterapêutica , Método de Monte Carlo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...